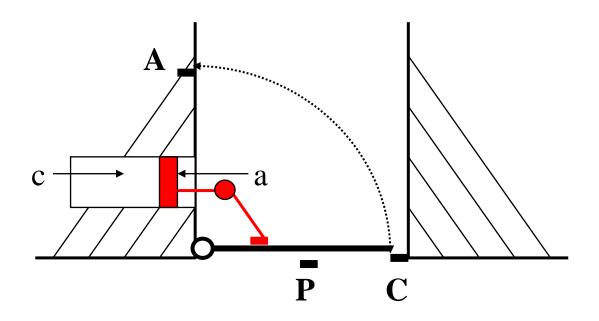
RETI LOGICHE T

Ingegneria Informatica

Esercitazione 2 Reti Sequenziali Asincrone

Marco Lippi (marco.lippi3@unibo.it)


[Parte dei lucidi sono stati realizzati da Samuele Salti]

Esercizio Sintesi RSA

Si vuole automatizzare l'apertura di una porta con le seguenti specifiche:

- ❖ La porta deve essere di norma tenuta chiusa: il valore 1 di un sensore P, adibito a rilevare la presenza di una persona sulla soglia è l'evento che determina un movimento di apertura.
- ❖ Un attuatore idraulico consente di muovere la porta: il comando a=1 la apre ed il comando c=1 la chiude. I due comandi devono essere attivi solo durante il movimento della porta, ed uno solo alla volta.
- ❖ Il sensore A indica se la porta è aperta (A=1) o non è completamente aperta (A=0). Il sensore C indica se la porta è chiusa (C=1) o non è completamente chiusa (C=0).
- Riportare la tabella della verità nel caso di realizzazione con macchina combinatoria.
- Quale comportamento indesiderato si può presentare quando la porta inizia ad aprirsi?
- Come deve essere modificata la specifica per evitarlo?
- Quale macchina occorre per rispettare la nuova specifica? Qual è il suo grafo degli stati e la sua tabella di flusso?

Gestione dell'apertura automatica di una porta

A: Sensore di porta aperta

C: Sensore di porta chiusa

P: Sensore di presenza

a: Comando apertura porta

c: Comando chiusura porta

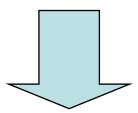
INGRESSI

USCITE

Soluzione 1: Macchina combinatoria Tabella della verità

Α	С	Р
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1 _{Cor}	1 Ifigurazi	oni ^O
1 in	ifigurazi npossib	1

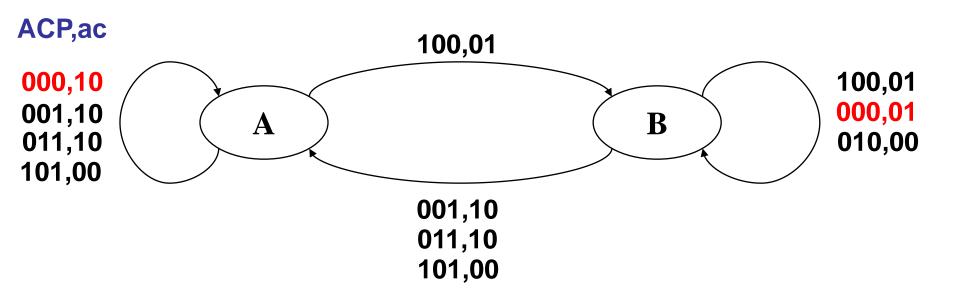
a	С
0	1
1	0
0	0
1	0
0	1
0	0
-	-
-	-


Comportamento anomalo per A=0, C=0, P=0: la porta potrebbe chiudersi in faccia a chi ha superato il sensore e sta entrando!

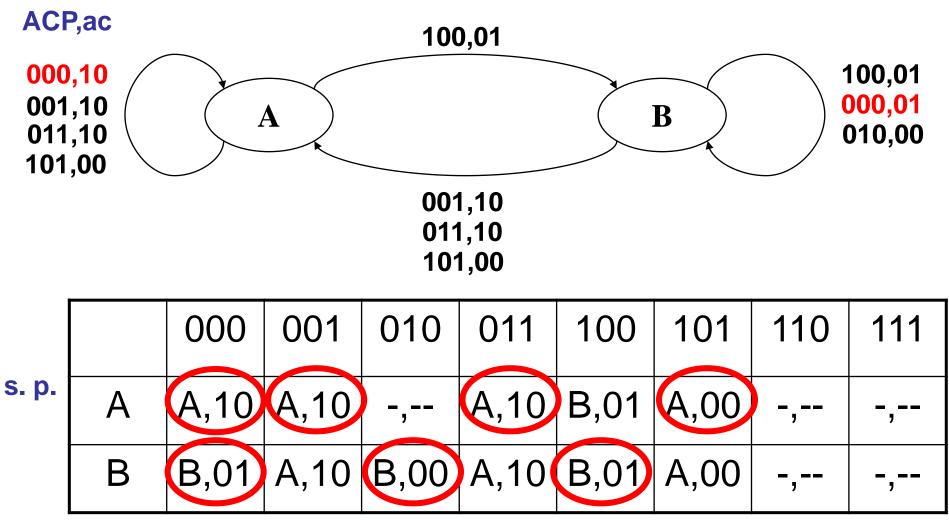
Occorre considerare la storia passata: macchina sequenziale

Soluzione 2: Macchina sequenziale asincrona

Nuova specifica:


Se la porta è in fase di apertura, essa deve continuare ad aprirsi completamente, indipendentemente dal valore rilevato dal sensore P

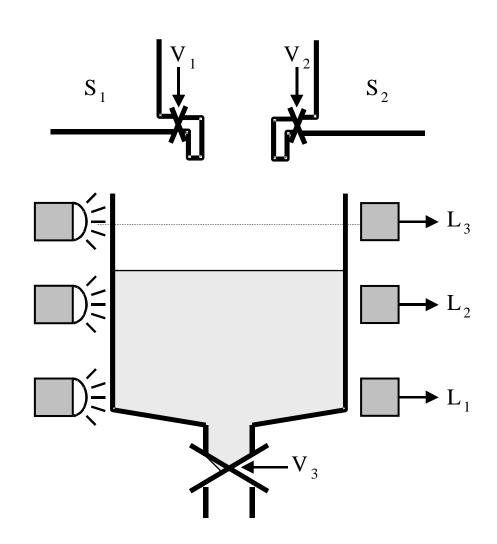
Occorre distinguere lo stato "apertura porta" dallo stato "chiusura porta"


Soluzione 2: Diagramma degli stati (Mealy)

Stato A: Apertura porta Stato B: Chiusura porta

Possono esistere soluzioni diverse ma equivalenti a quella proposta

Tabella di flusso



s. f., ac

Esercizio Sintesi RSA

Si vuole automatizzare l'impianto per la miscelazione di due liquidi, dotato di due serbatoi S1, S2; un vaso di miscelazione; tre rilevatori di riempimento L1, L2, L3; tre valvole V1, V2, V3.

- ❖ I tre rilevatori forniscono uscita 1 quando il livello del liquido nel vaso è minore della loro quota, uscita 0 quando è uguale o maggiore.
- ❖ Le tre valvole consentono il passaggio del liquido se, e solo se, il loro comando vale 1.

Esercizio Sintesi RSA

- ❖ L'unità di controllo dell'impianto realizzata con una RSA deve ripetere continuamente la seguente sequenza di fasi:
 - o riempimento del vaso con liquido proveniente da S1 finché il livello non raggiunge la quota L2;
 - o riempimento del vaso con liquido proveniente da S2 finché il livello non raggiunge la quota L3;
 - o svuotamento totale del vaso di miscelazione finché il livello non scende sotto la quota L1.
- 1. La macchina di controllo non può essere combinatoria. Perché?
- 2. La codifica degli ingressi e delle uscite è ridondante. Perché?
- 3. Individuare un grafo di Mealy a 3 stati considerando solo le configurazioni di ingresso possibili.
- 4. Tracciare la tabella di flusso considerando solo le configurazioni di ingresso possibili.
- 5. Individuare un grafo di Mealy equivalente con soli due stati.

1) Combinatoria?

NO, perche' il liquido sopra il livello L1 o sotto il livello L3 puo' caratterizzare una fase di svuotamento, ma anche una fase di riempimento.

	Svuotamento	Riempimento
L1 L2 L3	8 V1 V2 V3	V1 V2 V3
0 0 1	0 0 1	0 1 0
0 1 1	0 0 1	1 0 0

Solo una macchina sequenziale può rispondere in modo diverso allo stesso ingresso

2) Codice ridondante in ingresso?

SI, perche' le configurazioni possibili per L1,L2,L3 sono solo quattro

000

001

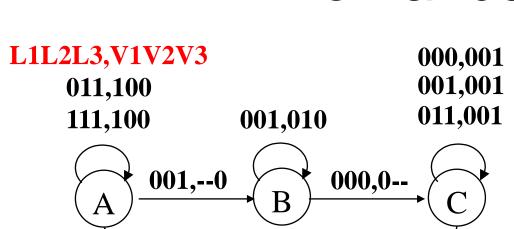
011

111

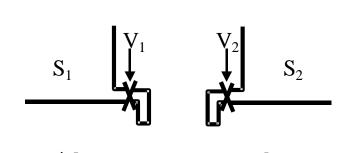
e potrebbero essere codificate con due soli bit

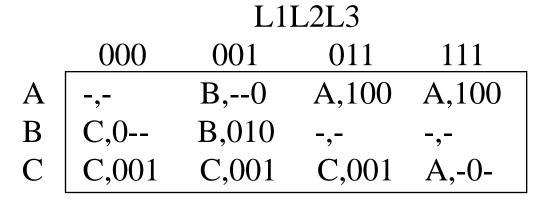
2) Codice ridondante in uscita?

SI, perche' le configurazioni possibili per V1,V2,V3 sono solo tre

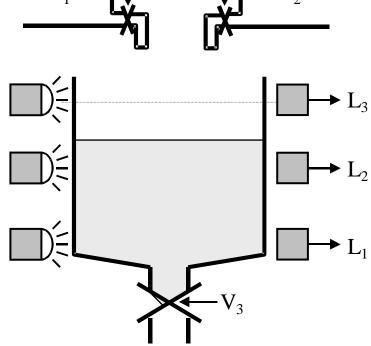

100

010


001


e potrebbero essere codificate con due soli bit

Domanda 3 e 4



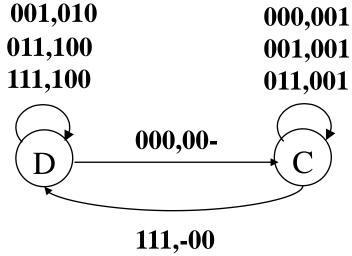
Stato A: riempi da S1 Stato B: riempi da S2 Stato C: svuota

111,-0-

L1L2L3

	000	001	011	111
A	-,-	B,0	A,100	A,100
В	C,0	B,010	-,-	-,-
C	C,001	B,0 B,010 C,001	C,001	A,-0-

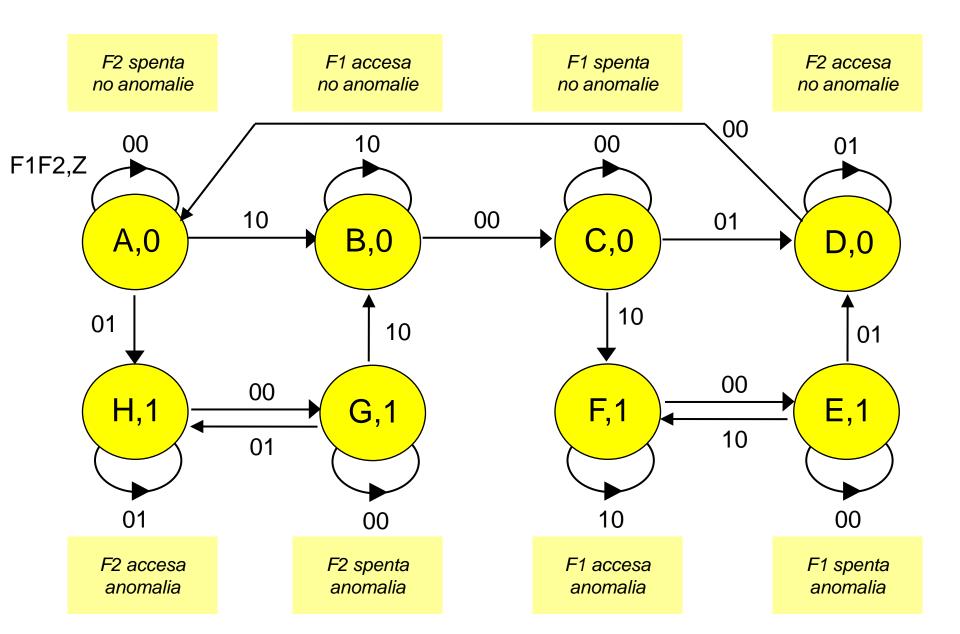
Stati A e B compatibili Stato AB =D: riempimento da S1 se L2=1, da S2 se L2=0


Stato C: svuota

L1L2L3,V1V2V3

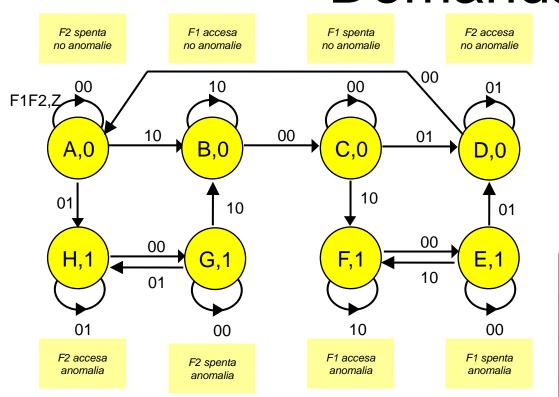
001,0

		L13	L2L3	
	000	001	011	111
D	C,0	D,010	D,100	D,100
C	C,001	C,001	C,001	D,-0-


Esercizio Sintesi RSA

- ❖ Due fotocellule F1 e F2 sono poste in sequenza su un nastro trasportatore. Esse assumono valore 1 al momento del passaggio di un oggetto sul nastro, 0 altrimenti.
- ❖Normalmente, al passaggio di un oggetto, le due fotocellule si accendono e si spengono in modo sequenziale (si assuma che esse non risultino mai contemporaneamente accese).
- ❖Se una delle due fotocellule si accende e si spegne per due volte consecutive, senza che si sia accesa l'altra, allora deve essere segnalata un'anomalia.
- ❖Una rete sequenziale asincrona riceve in ingresso i due segnali F1 e F2 e deve produrre in uscita un segnale Z, che deve essere pari a 1 in caso di anomalia, e 0 altrimenti.
- ❖Il segnale Z=1 deve essere mantenuto fino a che non si accende la fotocellula che era rimasta spenta troppo a lungo, indicando che un eventuale inceppamento del nastro è stato rimosso.

Esercizio Sintesi RSA


Individuare:

- 1. il grafo degli stati **primitivo** della rete tramite modello di Moore
- la tabella di flusso relativa all'automa minimo (modello di Mealy), evidenziando le condizioni di stabilità e riportando tabella triangolare e classi massime di compatibilità
- 3. una codifica degli stati indicando il grafo delle adiacenze e la tabella delle transizioni
- 4. le espressioni PS di costo minimo della variabile di stato di peso minore e dell'uscita, garantendo assenza di alea statica, riportando le mappe di Karnaugh e i raggruppamenti rettangolari individuati
- 5. l'espressione a NOR della variabile di stato di peso minore (partendo dal risultato ottenuto al punto precedente), riportando lo schema del circuito logico.

S.

p.

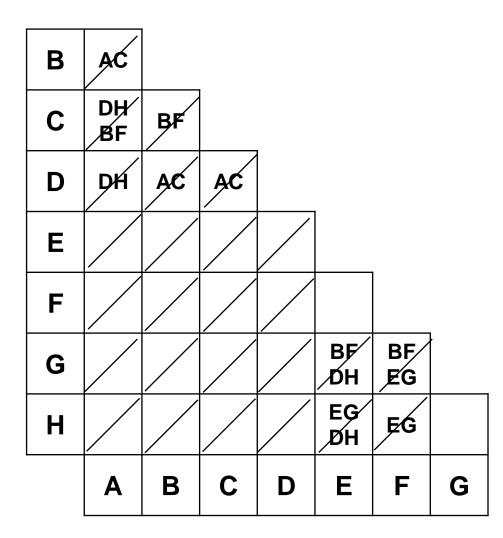
		F1	F2			
	00	01	11	10	Z	
Α	Α	Н	-	В	0	
В	С	-	-	В	0	
С	С	D	-	F	0	
D	Α	D	-	-	0	
E	Е	D	-	F	1	
F	E	-	-	F	1	
G	G	Н	-	В	1	
Н	G	Н	-	-	1	

s.f., **Z**

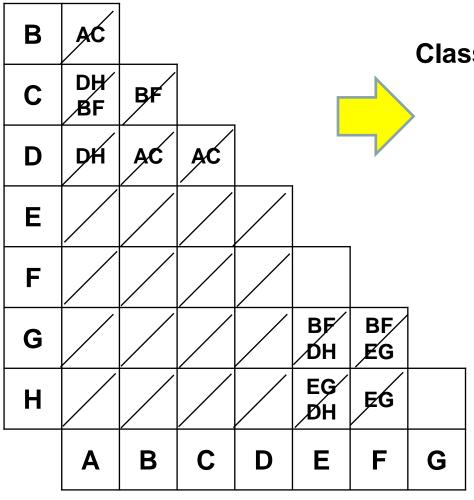
F1 F	2
-------------	---

	00	01	11	10	Z
Α	Α	Н	-	В	0
В	С	-	-	В	0
С	С	D	-	F	0
D	Α	D	-	-	0
E	Е	D	-	F	1
F	E	-	-	F	1
G	G	Н	-	В	1
Н	G	Н	-	-,	1

s.p.


s.f., **Z**

Nota: quando è richiesto un passaggio dal grafo primitivo secondo il modello di Moore al grafo minimo secondo il modello di Mealy, è sempre conveniente tradurre la TdF dal modello di Moore al modello di Mealy


	F1 F2				
	00	01	11	10	
Α	A,0	H,1	-	B,0	
В	C,0	•	•	B,0	
С	C,0	D,0	•	F,-	
D	A,0	D,0	-	•	
Ε	E,1	D,-	-	F,1	
F	E,1	•	•	F,1	
G	G,1	H,1	-	В,-	
Н	G,1	H,1	-	-	
			_		

s.p.

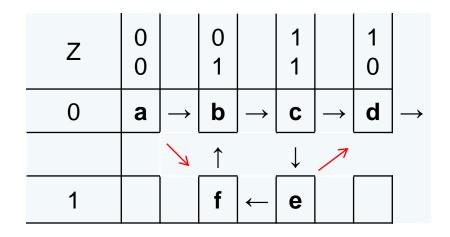
s.f., **Z**

Domanda 3 – Stati minimi

Classi massime di compatibilità

A, B, C, D, EF, GH

a={A}, b={B}, c={C}, d={D}, e={EF}, g={GH}


Per Unger, copertura garantisce chiusura

Domanda 3 – TdF minima

		F1 F2						
		00	00 01 11 10					
	а	a,0	f,-	-,-	b,0			
	b	c,0	-,-	-,-	b,0			
0.0	С	с,0	d,0	-,-	е,-			
s.p.	d	a,0	d,0	-,-	-,-			
	е	e,1	d,-	-,-	e,1			
	f	f,1	f,1	-,-	b,-			

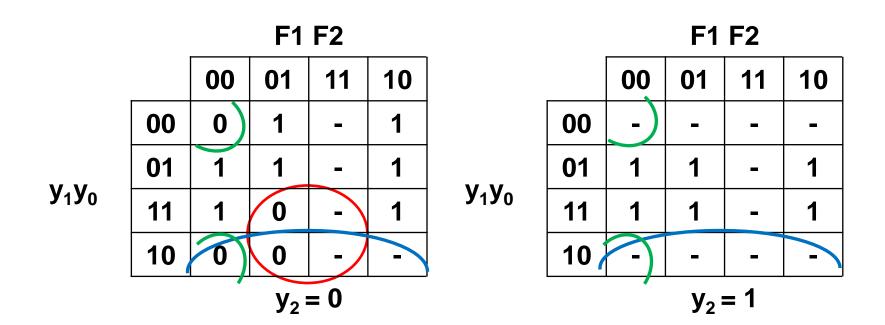
s.f., Z

Domanda 4 – TdT Minima

Corse: $a \rightarrow f$ $e \rightarrow d$

Le corse NON sono critiche in quanto è possibile transitare per gli stati non utilizzati 100 e 110

Domanda 4 – TdT Minima

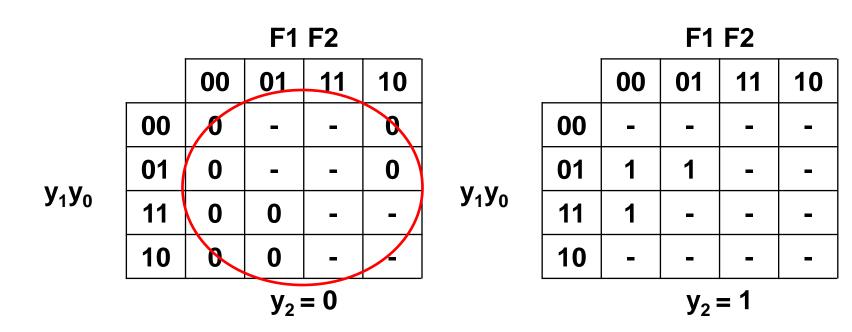

In giallo: corse non critiche modificando gli

F1 F2

s.f. per a ed e 00 01 11 10 000,0 001,0 a = 000001,-011,0 101,-001,0 b = 001c = 011011,0 010,0 111,--,d = 010010,0 0,000 100 -,--,--,-101,1 101,1 001,f = 101111,1 011,-111,e = 111110 -,--,-

$$Y_2 Y_1 Y_0, Z$$

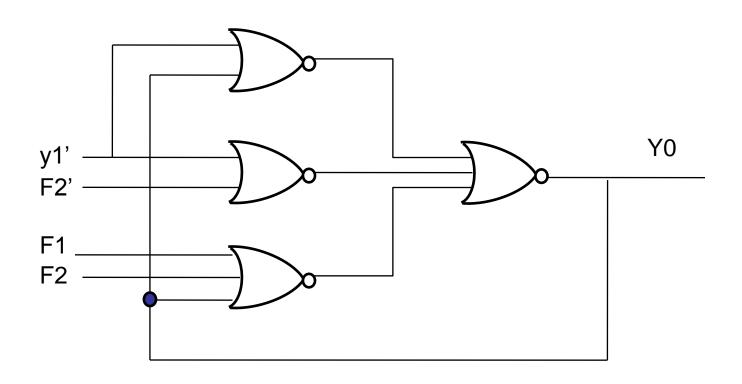
Domanda 5 – Sintesi combinatoria



$$Y0 = (F1 + F2 + y0)$$

$$(y1' + y0)$$

$$(y1' + F2' + y2)$$

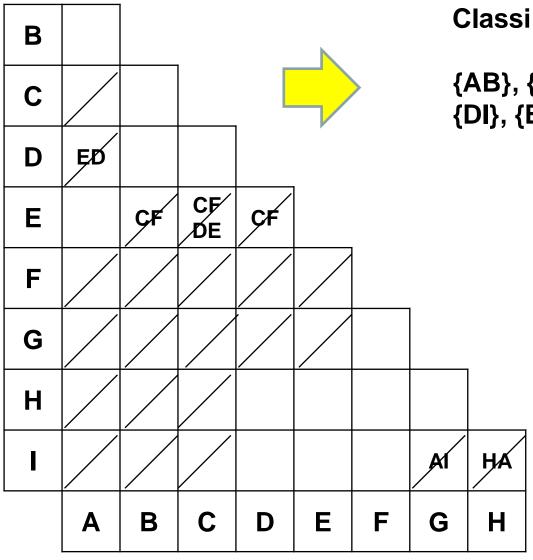

Domanda 5 – Sintesi combinatoria

$$Z = y2$$

Domanda 6 – Sintesi con NOR

$$Y_0 = (y1' + y0)(y1' + F2')(F1 + F2 + y0)$$

 $Y_0 = (y1' \downarrow y0) \downarrow (y1' \downarrow F2') \downarrow (F1 \downarrow F2 \downarrow y0)$


Esercizio Sintesi RSA

Determinare automa minimo, Tdf e TdT minime della macchina sequenziale asincrona di cui si conosce la seguente TdF del **grafo primitivo**.

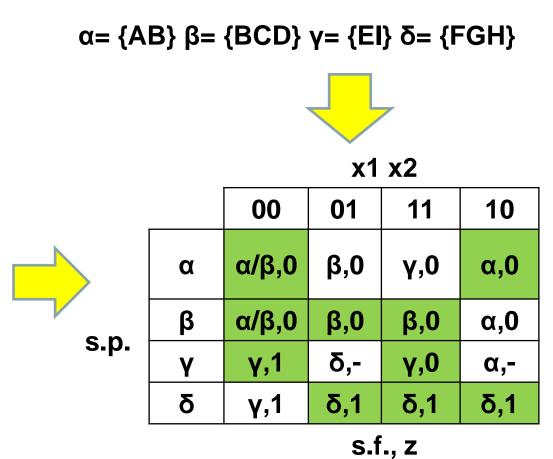
		x1 x2				
		00	01	11	10	
	Α	В,0	-,-	E,0	A,0	
	В	В,0	C,0	-,-	A,0	
	C	В,0	C,0	D,0	-,-	
	D	-,-	C,0	D,0	-,-	
s.p.	Е	-,-	F,-	E,0	-,-	
	F	-,-	F,1	G,1	-,-	
	G	-,-	-,-	G,1	H,1	
	Η	I,1	-,-	-,-	H,1	
		I,1	-,-	-,-	Α,-	
			s.f	., Z		

				•				
В								
С	ED							
D	ED							
E		CF	DE DE	CF				
F								
G								
Н								
I							AH	HA
	Α	В	С	D	Е	F	G	Н

Stati minimi

Classi massime di compatibilità

{AB}, {AE}, {BCD}, {DH}, {DI}, {EH}, {EI}, {FGH}, {FI}



α= {AB} β= {BCD} γ= {EI} δ= {FGH}

Per Unger, copertura garantisce chiusura

TdF minima

		x1 x2				
			01	11	10	
	Α	В,0	-,-	E,0	A,0	
	В	В,0	C ,0	-,-	Α,0	
	С	В,0	C ,0	D,0	-,-	
	D	-,-	C,0	D,0	-,-	
s.p.	Ε	-,-	F,-	E,0	-,-	
	F	-,-	F,1	G,1	-,-	
	G	-,-	-,-	G,1	H,1	
	Н	I ,1	-,-	-,-	H,1	
	I	I ,1	-,-	-,-	Α,-	
	s.f., z					

TdT Minima

x1 x2

	00	01	11	10
α	α,0	β,0	γ,0	α,0
β	β,0	β,0	β,0	α,0
γ	γ,1	δ,-	γ,0	α,-
δ	γ,1	δ,1	δ,1	δ,1

s.p.

Grafo delle adiacenze

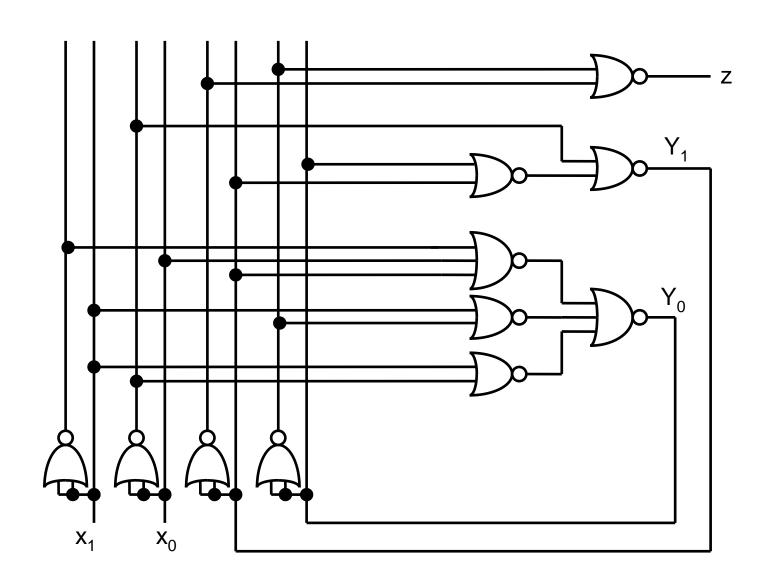
y1\y2	0		1
0	α	\leftrightarrow	β
	_		
1	γ	\leftrightarrow	δ

s.f., z

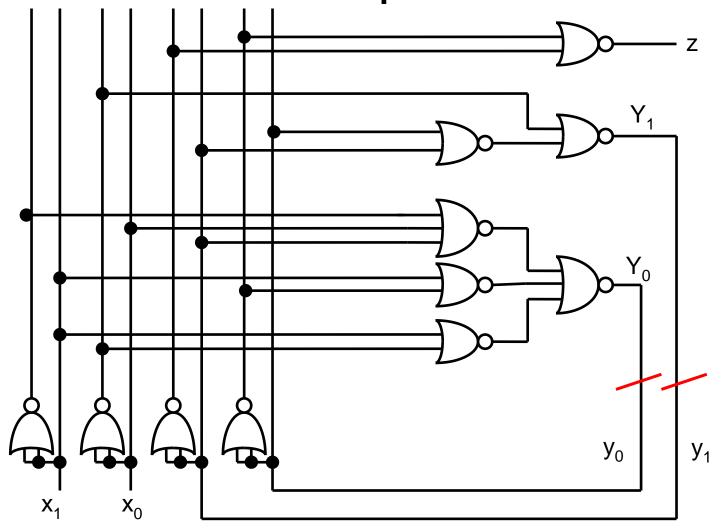
x1 x2

	00	01	11	10
00	00,0	01,0	10,0	00,0
01	01,0	01,0	01,0	00,0
10	10,1	11-	10,0	00,-
11	10,1	11,1	11,1	11,1

y1y2


Y1Y2, z

Esercizio Analisi RSA


❖ Data la rete sequenziale asincrona a NOR riportata nella prossima slide, determinare:

- 1. le espressioni a NOR delle variabili di stato futuro e dell'uscita e le corrispondenti espressioni normali PS
- 2. le mappe delle variabili **Y**₁ **Y**₀ e **z** evidenziando i RR derivanti dai termini somma delle espressioni ricavate in precedenza, e la tabella delle transizioni, evidenziando le situazioni di stabilità
- 3. i comportamenti indesiderati e le violazioni ai vincoli di progetto delle reti asincrone che si riscontrano nelle mappe e nella tabella ricavate al punto precedente.
- 4. la tabella di flusso, eliminando le colonne con comportamenti indesiderati
- 5. le transizioni multiple, riscrivendo in maniera opportuna la tabella di flusso
- 6. stati irraggiungibili e transizioni che corrispondono a configurazioni d'ingresso impossibili, eliminando entrambe dalla tabella
- 7. stati compatibili, semplificando la tabella
- 8. Il grafo degli stati e una descrizione a parole del comportamento

Esercizio Analisi RSA

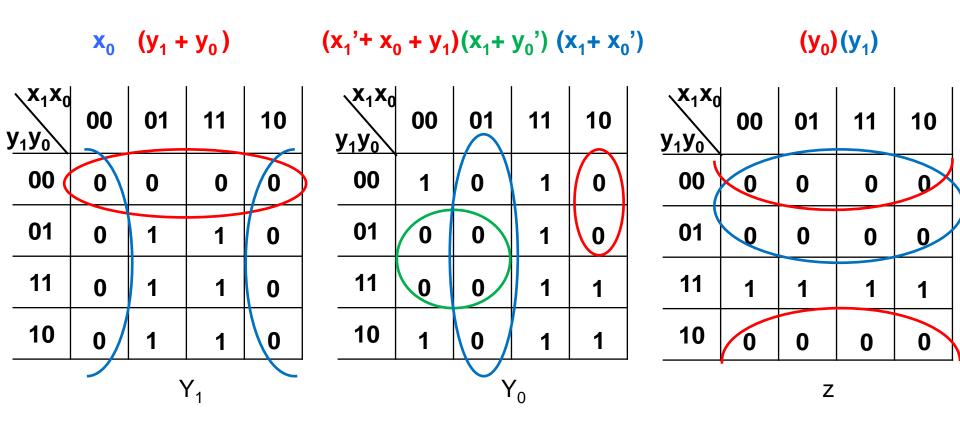
Domanda 1 - Espressioni NOR

$$Y_{1} (NOR) = x_{0}' \downarrow (y_{1} \downarrow y_{0})$$

$$Y_{0} (NOR) = (x_{1}' \downarrow x_{0} \downarrow y_{1}) \downarrow (x_{1} \downarrow y_{0}') \downarrow (x_{0}' \downarrow x_{1})$$

$$z (NOR) = y_{1}' \downarrow y_{0}'$$

Domanda 1 - Espressioni PS


$$Y_{1} (NOR) = x_{0}' \downarrow (y_{1} \downarrow y_{0})$$

$$Y_{0} (NOR) = (x_{1}' \downarrow x_{0} \downarrow y_{1}) \downarrow (x_{1} \downarrow y_{0}') \downarrow (x_{0}' \downarrow x_{1})$$

$$z (NOR) = y_{1}' \downarrow y_{0}'$$

$$Y_1 (PS) = x_0 (y_1 + y_0)$$

 $Y_0 (PS) = (x_1' + x_0 + y_1) (x_1 + y_0') (x_1 + x_0')$
 $z (PS) = y_1 y_0$

Domanda 2 - Mappe

$$Y_1 (PS) = x_0 (y_1 + y_0)$$

 $Y_0 (PS) = (x_1' + x_0 + y_1) (x_1 + y_0') (x_1 + x_0')$
 $z (PS) = y_1 y_0$

Domanda 2 -TdT e stabilità

$\mathbf{x}_1 \mathbf{x}_0$ $\mathbf{y}_1 \mathbf{y}_0$	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

$\mathbf{x}_1 \mathbf{x}_0$ $\mathbf{y}_1 \mathbf{y}_0$	00	01	11	10
00	1	0	1	0
01	0	0	1	0
11	0	0	1	1
10	1	0	1	1

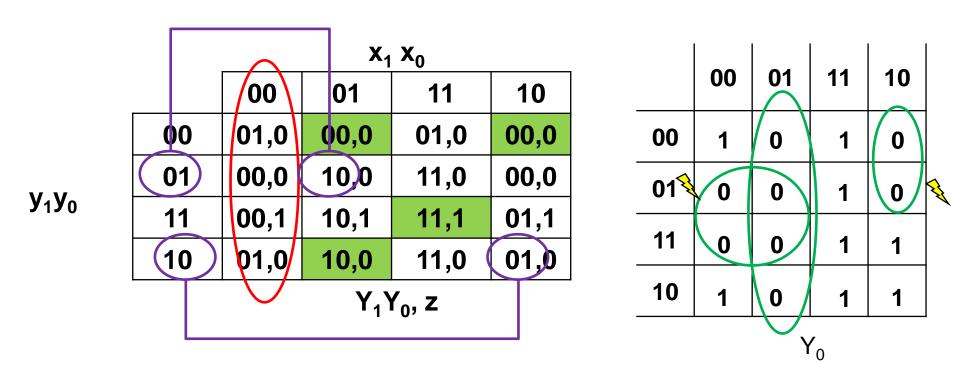
$\mathbf{x}_1 \mathbf{x}_0$ $\mathbf{y}_1 \mathbf{y}_0$	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	0	0

Ζ

 Y_1

↓

 $X_1 X_0$


	1 0				
	00	01	11	10	
00	01,0	00,0	01,0	00,0	
01	00,0	10,0	11,0	00,0	
11	00,1	10,1	11,1	01,1	
10	01,0	10,0	11,0	01,0	

 Y_0

 y_1y_0

 Y_1Y_0 , z

Domanda 3 – Violazioni vincoli RSA

- 1. Ad ingresso 00 non corrisponde nessun stato stabile
- 2. Transizioni tra stati con codifica non adiacente, rischio di corsa critica solo nel caso $y_1y_0 = 01$
- 3. Sintesi della rete di stato futuro Y₀ non elimina a priori il rischio di alea statica

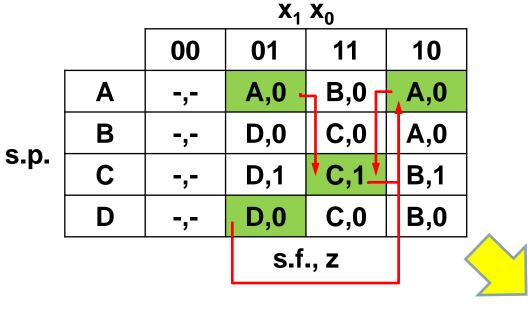
Domanda 4 - TdF

	$\mathbf{x_1} \ \mathbf{x_0}$				
	00	01	11	10	
00	01,0	00,0	01,0	00,0	
01	00,0	10,0	11,0	00,0	
11	00,1	10,1	11,1	01,1	
10	01,0	10,0	11,0	01,0	

 y_1y_0

 Y_1Y_0, z

s.p.

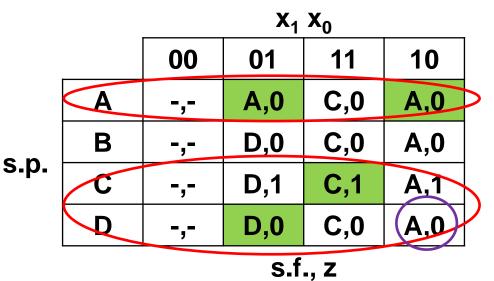

 $\mathbf{X}_{1} \mathbf{X}_{0}$

	00	01	11	10
A=00	-,-	A,0	B,0	A,0
B=01	-,-	D,0	C,0	A,0
C=11	-,-	D,1	C,1	B,1
D=10	-,-	D,0	C,0	В,0

s.f., z

Domanda 5 – Trans. Multiple

s.p.



		I U			
	00	01	11	10	
Α	-,-	A,0	C,0	A,0	
В	-,-	D,0	C,0	A,0	
С	-,-	D,1	C,1	A ,1	
D	-,-	D,0	C,0	A,0	

s.f., z

 $X_1 X_0$

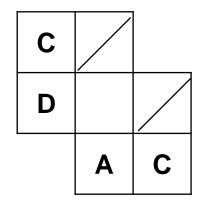
Domanda 6 – Stati/ingressi impossibili

B è uno stato irraggiungibile, in quanto nessun stato futuro porta a B

Quando l'automa è nello stato D, stabile per 01, la configurazione non adiacente 10 è inammissibile per il corretto funzionamento della RSA

s.p.

	00	01	11	10
Α	-,-	A,0	C,0	A,0
С	-,-	D,1	C,1	A,1
D	-,-	D,0	C,0	-,-

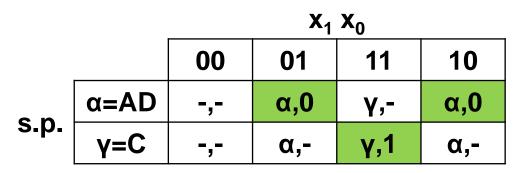

s.f., z

 $X_1 X_0$

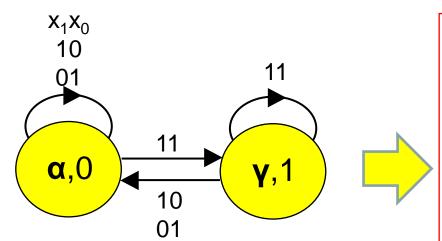
Domanda 7 – Stati compatibili

		^1 ^0					
		00	01	11	10		
s.p.	A	-,-	A,0	C,0	A,0		
	C	-,-	D,1	C,1	A ,1		
	D	-,-	D,0	C,0	-,-		

s.f., z



		$\mathbf{x_1} \mathbf{x_0}$					
		00	01	11	10		
s.p.	α=AD	-,-	α,0	γ,-	α,0		
	γ=C	-,-	α,-	γ,1	α,-		


s.f., z

Domanda 8 – Grafo e descrizione

In realtà la rete ha un comportamento combinatorio: risponde 1 quando i due ingressi sono entrambi 1. In altre parole, la si può pensare come una realizzazione molto inefficiente di un AND