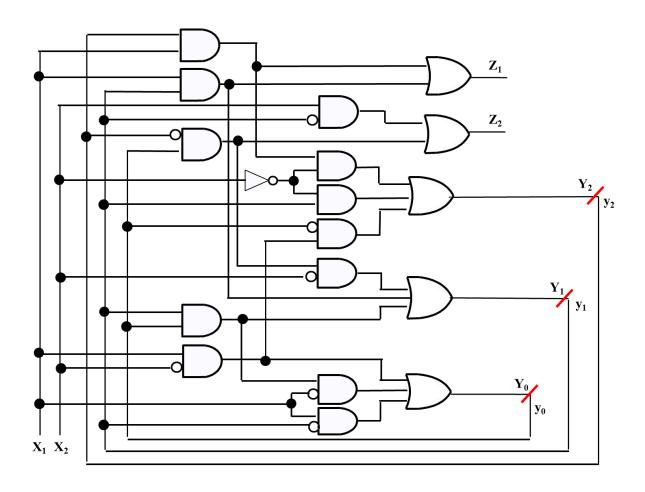

Prova d'esame di Reti Logiche T – 14 Settembre 2016

COGNOME: NOME: MATRICOLA:
Si ricorda il divieto di utilizzare qualsiasi dispositivo elettronico (computer, tablet, smartphone,) eccetto la calcolatrice, e che il compito verrà considerato nullo in assenza di regolare iscrizione su Almaesami. Non è possibile uscire e rientrare in aula dopo le prime due ore.
Esercizio 1 (13 punti)
Una rete sequenziale sincrona riceve in ingresso due segnali A e B e produce in uscita un segnale Z. L'uscita Z vale 1 se negli ultimi tre cicli di clock (compreso quello corrente) si è verificata la sequenza di ingressi 00-11-00 oppure 11-00-11.
1.1 Individuare il grafo degli stati minimo utilizzando il modello di Mealy . (punti 4)
AB, Z
1.2 Individuare la tabella di flusso e la tabella delle transizioni relative al grafo del punto precedente (modello di Mealy). (<i>punti 3</i>)

1.3 Individuare l'espressione PS di costo minimo della variabile di uscita, riportando la mappa di Karnaugh e i raggruppamenti rettangolari individuati (*punti 3*)

1.4 Realizzare la sintesi diretta del segnale Z mediante due Shift Register a 2 bit. Oltre a Z, indicare nello schema i segnali di ingresso per lo Shift Register. (*punti 3*)


2-bit SR SI SO Q0

Prova d'esame di Reti Logiche T – 14 Settembre 2016

COGNOME:..... NOME: MATRICOLA:......

Esercizio 2 (13 punti)

Si esegua l'analisi della seguente rete sequenziale asincrona

2.1 Individuare l'espressione dei segnali d'uscita e di stato in forma SP. (punti 2)

2.2 Individuare la tabella delle transizioni della rete, evidenziando gli stati stabili ed eventuali stati non necessari ai fini della determinazione del grafo degli stati. Evidenziare anche l'eventuale presenza di transizioni multiple e corse. (*punti 3*)

	X_1X_2			
y ₂ y ₁ y ₀	00	01	11	10
000				
001				
011				
010				
100				
101				
111				
110				

2.3 Individuare la tabella di flusso. (punti 3)

Prova d'esame di Reti Logiche T – 14 Settembre 2016

COGNOME:	NOME:	MATRICOLA:
2.4 Indicare eventuali violazioni d Nel caso di presenza di alee statio		nmente a corse critiche e alee statiche iva di alee. (<i>punti 2</i>)
2.5 Individuare il grafo degli sta	ati della rete e indicare bre	evemente a parole il comportamento
dell'automa. (<i>punti 3</i>)		

Esercizio 3 (6 punti)

3.1 Sia $F(a,b) = a b (a \oplus b)$. Per quali valori di a e b F assume valore 1? (punti 2)

3.2 Sia $G(a,b) = (a \oplus b')$. Manipolare l'espressione di G in modo da ottenere l'espressione canonica SP. (punti 2)

3.3 Scrivere la sintesi a NAND della funzione G. (punti 2)