
Supplementary material

This document provides additional details concerned
with CVPR 2019 paper ”Learning monocular depth es-
timation infusing traditional stereo knowledge”. We
have included the detailed specification of our depth-
from-mono architecture monocular Residual Matching
(monoResMatch), additional quantitative results and more
visual depth maps on KITTI and CityScapes datasets.

1. Specification of monoResMatch

The detailed specification of our network provided in Ta-
ble 1 can be divided into three modules: the multi-scale
feature extractor, the initial disparity estimator and the final
disparity refinement stage. For each layer of the network,
we report convolution kernel size K, stride S, the input and
output number of channels and the input of the layer. The
symbol “,” means concatenation.

2. Depth Estimation with 50 cap

In this section, we report additional experimental results
on the Eigen’s KITTI test split [1], evaluating depth maps
within 0-50 m range. Table 2 shows a comparison between
our architecture monoResMatch and other works reporting
this quantitative evaluation, confirming once again the su-
periority of our proposal compared to all competitors.

3. Qualitative results

Our paper has shown several disparity maps predicted
by the proposed architecture. As a supplement, we report
in this document more outcomes of our network using both
Cityscapes and KITTI datasets. Figure 1 shows qualitative
results on the test set of KITTI stereo 2015 [6] generated
by monoResMatch fine-tuned on the 200-acrt ground-truth
labels of the training set. In Figure 1, the disparity and er-
ror images are extracted from the KITTI evaluation website.
Disparity images are shown using the color map from [3].
For the error images, warmer color indicates larger errors in
depth prediction. In Figure 2, we visualize disparity maps
on the Cityscapes dataset. As suggested in [4], we discarded
the lower 20% of the input image to delete the hood of the
car. Moreover, we resized the input shape to 1024 × 512
resolution. Figure 4 presents results comparing three differ-
ent configurations of monoResMatch. Specifically, we ana-
lyze visual effects of the network trained on 1) Semi-Global
Matching proxy labels with those obtained by 2) fine-tuning
on 200 accurate ground-truth labels of KITTI 2015 and 3)
on 700 raw LiDAR samples from the Eigen training split.

Finally, in Figure 4 we report qualitative comparison
with other state-of-the-art methods on the Eigen test split.

Layer K S In/Out Input
Multi-scale feature extractor

conv1 7 2 3/64 input
up conv1 4 2 64/32 conv1
conv2 5 2 64/128 conv1
up conv2 8 4 128/32 conv2
up conv12 1 1 64/32 up conv1, up conv2

Initial Disparity Estimation
conv rdi 1 1 128/64 conv2
conv3 3 2 64/256 conv rdi
conv3 1 3 1 256/256 conv3
conv4 3 2 256/512 conv3 1
conv4 1 3 1 512/512 conv4
conv5 3 2 512/512 conv4 1
conv5 1 3 1 512/512 conv5
conv6 3 2 512/1024 conv5 1
conv6 1 3 1 1024/1024 conv6
disp6 3 1 1024/2 conv6 1
upconv5 4 2 1024/512 conv6 1
updisp6 4 2 2/1 disp6
iconv5 4 1 1025/512 upconv5,updisp6,conv5 1
disp5 3 1 512/2 iconv5
upconv4 4 2 512/256 iconv5
updisp5 4 2 2/1 disp5
iconv4 4 1 769/512 upconv4,updisp5,conv4 1
disp4 3 1 256/2 iconv4
upconv3 4 2 256/128 iconv4
updisp4 4 2 2/1 disp4
iconv3 4 1 385/128 upconv3,updisp4,conv3 1
disp3 3 1 128/2 iconv3
upconv2 4 2 128/64 iconv3
updisp3 4 2 2/1 disp3
iconv2 4 1 193/64 upconv2,updisp3,conv2 1
disp2 3 1 64/2 iconv2
upconv1 4 2 64/32 iconv2
updisp2 4 2 2/1 disp2
iconv1 4 1 97/32 upconv1,updisp2,conv1 1
disp1 3 1 32/2 iconv1
upconv0 4 2 32/16 iconv1
updisp1 4 2 2/1 disp1
iconv0 4 1 49/32 upconv0,updisp1,up conv12
disp0 3 1 32/2 iconv0

Warping
wr conv1 - - 64/64 conv1
wr up conv12 - - 32/32 up conv12
wl up conv12 - - 32/32 wr up conv12

Disparity Refinement
r conv0 3 1 66/32 |up conv12 - wl up conv12|, disp0, up conv12
r conv1 3 2 32/64 r conv0
c conv1 3 1 64/16 conv1
wr c conv1 3 1 64/16 wr conv1
r corr - - 16/41 c conv1, wr c conv1
r conv1 1 3 1 105/64 r corr, r conv1
r conv2 3 2 64/128 r conv1 1
r conv2 1 3 1 128/128 r conv2
r res2 3 1 130/1 r conv2 1, disp2
up r res2 3 2 1/2 r res2
r upconv1 4 2 64/128 r conv2 1
r iconv1 4 1 130/64 r upconv1, up r res2, r conv1 1
r res1 3 1 66/1 r iconv1, disp1
up r res1 3 2 1/2 r res1
r upconv0 4 2 32/64 r conv1
r iconv0 4 1 66/32 r upconv0, up r res1, r conv0
r res0 3 1 34/1 r iconv0, disp0

Table 1. Detailed monoResMatch architecture.
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Figure 1. Stereo evaluation of our depth-from-mono framework. From left to right the input image, the predicted disparity and the errors
with respect to ground truth. The last line reports the color code used to display the seriousness of the shortcomings.
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Figure 2. Qualitative results of monoResMatch trained semi-supervisedly using SGM on Cityscapes dataset.
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(a) (b) (c) (d)
Figure 3. Qualitative results of the proposed depth-from-mono architecture. From left to right, the input image from KITTI 2015 test set
(a), the predicted depth by monoResMatch trained on (b) SGM proxy annotations, fine-tuned using (c) 200-acrt ground-truth labels or (d)
200-acrt + 700 raw LiDAR samples.

Input Image Zhou et al. [11] Yin et al. [10] Godard et al. [4] ours (SGM only)
Figure 4. Qualitative comparison with state-of-the-art methods on Eigen’s KITTI test split. For our network and [4] no post-processing
operation has been applied.
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